The 17th harmonic, octave reduced to the frequency ratio 17/16, is about 105¢. It is likely to sound dissonant against the fundamental, which is perhaps one reason why Just Intonation composers usually stop at the 13-limit or lower. Another interval of 17 that can sound just as dissonant is 18/17, about 99¢. Thus, 17/16 also clashes with 9/8. Therefore, one approach for 17-limit harmony is to filter the total list of chords to exclude these small steps, resulting in non-rooted harmonies.
Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain any interval smaller than or equal to 16/15 (which includes 17/16 and 18/17) among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)
Every otonal tetrad within the 17-limit is listed in the table below as the simplest possible subset of harmonics 2-17; there are 56 in total. The columns to the right of the chords provide different cutoffs for filtering out small steps. For example, chords with a 16/15 cutoff do not contain any interval smaller than or equal to 16/15 (which includes 17/16 and 18/17) among the dyads. Since this eliminates harmonics 2 and 9 right away, it also eliminates chords containing 10/9 and 9/8. (This is why there is a jump from 12/11 to 9/8 in the table below.)
56 tetrads
20 tetrads
16 tetrads
13 tetrads
10 tetrads
7 tetrads
4 tetrads
1 tetrad